
 

Assessing the Impact of Game Day Schedule and 

Opponents on Travel Patterns and Route Choice  

using Big Data Analytics 
 
Final Report 

June 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the 

facts and the accuracy of the information presented herein. This document is disseminated under 

the sponsorship of the Nebraska Department of Transportation in the interest of information 

exchange. The contents do not necessarily reflect the official views of the Nebraska Department 

of Transportation. This report does not constitute a standard, specification, or regulation. The 

U.S. Government assumes no liability for the contents or use thereof.  

 

 

About CTRE 

This work was performed by the Center for Transportation Research and Education 

(CTRE) at Iowa State University. CTREôs mission is to develop and implement innovative 

methods, materials, and technologies for improving transportation efficiency, safety, and 

reliability while improving the learning environment of students, faculty, and staff in 

transportation-related fields.  

 

 

Non-Discrimination Statement 

Iowa State University does not discriminate on the basis of race, color, age, religion, 

national origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital 

status, disability, or status as a U.S. veteran. Inquiries regarding non-discrimination policies may 

be directed to Office of Equal Opportunity, Title IX/ADA Coordinator and Affirmative Action 

Officer, 3350 Beardshear Hall, Ames, Iowa 50011, 515-294-7612, eooffice@iastate.edu.  

  



 

Technical Report Documentation Page 

1. Report No. 

SPR-1(18) M078 

2. Government Accession No. 

 

3. Recipient's Catalog No. 

 

4. Title and Subtitle 

Assessing the Impact of Game Day Schedule and Opponents on Travel 

Patterns and Route Choice using Big Data Analytics 

5. Report Date 

June 2019 

6. Performing Organization Code 

 

7. Author(s) 

Anuj Sharma and Vesal Ahsani 

8. Performing Organization Report No. 

 

9. Performing Organization Name and Address 

Center for Transportation Research and Education 

Iowa State University 

2711 S. Loop Drive, Suite 4700 

Ames, IA 50010-8664 

10. Work Unit No. (TRAIS) 

 

11. Contract or Grant No. 

 

12. Sponsoring Agency Name and Address 

Nebraska Department of Transportation 

1500 Hwy. 2 

Lincoln, NE 68502 

13. Type of Report and Period Covered 

Final Report July 2017 ï June 2019 

14. Sponsoring Agency Code 

SPR-1(18) M078 

15. Supplementary Notes 

  

16. Abstract 

The transportation system is crucial for transferring people and goods from point A to point B. However, its reliability can 

be decreased by unanticipated congestion resulting from planned special events. For example, sporting events collect large 

crowds of people at specific venues on game days and disrupt normal traffic patterns.  

The goal of this study was to understand issues related to road traffic management during major sporting events by using 

widely available INRIX data to compare travel patterns and behaviors on game days against those on normal days. A 

comprehensive analysis was conducted on the impact of all Nebraska Cornhuskers football games over five years on traffic 

congestion on five major routes in Nebraska. We attempted to identify hotspots, the unusually high-risk zones in a 

spatiotemporal space containing traffic congestion that occur on almost all game days. For hotspot detection, we utilized a 

method called Multi-EigenSpot, which is able to detect multiple hotspots in a spatiotemporal space. With this algorithm, 

we were able to detect traffic hotspot clusters on the five chosen routes in Nebraska. After detecting the hotspots, we 

identified the factors affecting the sizes of hotspots and other parameters. The start time of the game and the Cornhuskersô 

opponent for a given game are two important factors affecting the number of people coming to Lincoln, Nebraska, on game 

days. Finally, the Dynamic Bayesian Networks (DBN) approach was applied to forecast the start times and locations of 

hotspot clusters in 2018 with a weighted mean absolute percentage error (WMAPE) of 13.8%. 

17. Key Words 

game day trafficðhotspot detectionðlocal sporting 

eventsðspatiotemporal data 

18. Distribution Statement 

19. Security Classif. (of this report) 

Unclassified 

20. Security Classif. (of this page) 

Unclassified 

21. No. of Pages 

75 

22. Price 

 

 

  



 

 

  



 

Assessing the Impact of Game Day Schedule and Opponents on Travel Patterns  

and Route Choice using Big Data Analytics 
 

Final Report 

 

 

 

 

 

Anuj Sharma, PhD 

Research Scientist and Associate Professor 

Center for Transportation Research and Education 

Iowa State University 

 

Vesal Ahsani, PhD 

Graduate Research Assistant 

Center for Transportation Research and Education 

Iowa State University 

 

 

 

 

 

 

A Report on Research Sponsored by 

 

Nebraska Department of Transportation 

 

 

June 2019 

  



 

 



 

v 

Table of Contents 

EXECUTIVE SUMMARY ........................................................................................................... xi 

1. INTRODUCTION ...............................................................................................................1 

1.1 Background ....................................................................................................................1 
1.2 Planned Special Events (PSE) .......................................................................................1 

1.2.1 INRIX Data Sources .............................................................................................2 
1.2.2 INRIX Data Format ..............................................................................................3 

1.3 Hotspot Detection ..........................................................................................................4 

1.4 Report Organization .......................................................................................................4 

2. LITERATURE REVIEW ............................................................................................................6 

2.1 Introduction ....................................................................................................................6 

2.2 Planned Special Events (PSE) .......................................................................................6 
2.3 Professional Sporting Events .........................................................................................7 
2.4 Widely Available INRIX data .......................................................................................9 

2.5 Hotspot Detection ........................................................................................................12 
2.6 Conclusion ...................................................................................................................13 

3. DATA ........................................................................................................................................14 

3.1 Introduction ..................................................................................................................14 
3.2 Exploratory Analysis ...................................................................................................17 

3.2.1 Route 1: I-80 .......................................................................................................18 
3.2.2 Route 2: NE 2......................................................................................................23 
3.2.3 Route 3: NE 31....................................................................................................25 

3.2.4 Route 4: US 6 ......................................................................................................28 

3.2.5 Route 5: US 77 ....................................................................................................31 
3.3 Conclusion ...................................................................................................................34 

4. TRAFFIC HOTSPOT ANALYSIS ...........................................................................................36 

4.1 Introduction ..................................................................................................................36 
4.1.1 Incident Detection ...............................................................................................36 

4.1.2 Data Stream and Pre-Processing .........................................................................36 
4.2 Hotspot Detection ........................................................................................................36 

4.2.1 Introduction .........................................................................................................36 
4.2.2 EigenSpot Algorithm ..........................................................................................38 
4.2.3 Multi-EigenSpot Algorithm ................................................................................40 

4.3 Hotspot Parameters ......................................................................................................43 

4.3.1 Start Time of the Game .......................................................................................44 

4.3.2 Opponent .............................................................................................................45 
4.4 Dynamic Bayesian Networks .......................................................................................48 

4.4.1 Learning with Incomplete Data ..........................................................................48 
4.4.2 Experimental Method..........................................................................................49 

4.5 Conclusion ...................................................................................................................50 

5. SUMMARY AND CONCLUSIONS ........................................................................................52 



 

vi 

REFERENCES ..............................................................................................................................55 

APPENDIX A: HEAT MAPS FOR NE 31, US 6, US 77, AND NE 2 .........................................60 

APPENDIX B: LENGTH AND DURATION OF HOT SPOTS OF NOON AND 

EVENING GAME DAYS .............................................................................................................61 
 

  



 

vii  

List of Figures 

Figure 1.1. An instance of Nebraska INRIX data ........................................................................... 4 
Figure 3.1. Five routes selected for this study .............................................................................. 17 

Figure 3.2. Hourly CDFs of speeds on two game days and two normal days for a sample 

game starting at 2:30 PM ............................................................................................ 18 
Figure 3.3. Route I-80 in Nebraska, with blue points representing INRIX TMC segments ........ 19 
Figure 3.4. Route I-80 EB, with red points representing INRIX TMC segments showing 

congestion on game days ............................................................................................ 19 

Figure 3.5. Route I-80 WB, with red points representing INRIX TMC segments showing 

congestion on game days ............................................................................................ 20 
Figure 3.6. (a) Hotspots indicated by red points and (b) heat maps for I-80 EB and WB for 

noon and evening games ............................................................................................. 22 

Figure 3.7. Route NE 2, with blue points representing INRIX TMC segments ........................... 23 
Figure 3.8. (a) Hotspots indicated by red points and (b) heat maps for NE 2 EB and WB for 

noon and evening games ............................................................................................. 25 
Figure 3.9. Route NE 31, with blue points representing INRIX TMC segments ......................... 26 
Figure 3.10. (a) Hotspots indicated by red points and (b) heat maps for NE 31 NB and SB 

for noon and evening games ....................................................................................... 28 
Figure 3.11. Route US 6, with blue points representing INRIX TMC segments ......................... 29 

Figure 3.12. (a) Hotspots indicated by red points and (b) heat maps for US 6 EB and WB 

for noon and evening games ....................................................................................... 31 
Figure 3.13. Route US 77, with blue points representing INRIX TMC segments ....................... 32 

Figure 3.14. (a) Hotspots indicated by red points and (b) heat maps for US 77 NB and SB 

for noon and evening games ....................................................................................... 34 

Figure 4.1. Sample result of the proposed algorithm showing a spatiotemporal matrix for I-

80................................................................................................................................. 42 

Figure 4.2. Sample results showing speed contour maps for a normal day and a typical 

congested day .............................................................................................................. 43 

Figure 4.3. Impact of the start time of the game on congestion (hotspot) length ......................... 44 
Figure 4.4. Impact of the start time of the game on congestion (hotspot) duration ...................... 45 
Figure 4.5. Impact of Cornhuskersô opponents on the congestion length .................................... 46 

Figure 4.6. Impact of Cornhuskersô opponents on the congestion duration ................................. 47 
Figure 4.7. Predicted and actual hotspot clusters showing traffic congestion on game days 

on I-80 in 2018 ............................................................................................................ 50 
Figure A.1 Predicted and actual hotspot clusters showing traffic congestion on game days 

in 2018 on four routes: NE 31, US 6, US 77, and NE 2 ............................................. 60 
 

 

List of Tables 

Table 3.1. Nebraska Cornhuskers home game schedule and results from 2013 to 2017 ............. 15 

Table 3.2. Summary of all hot spots of noon and evening game days ......................................... 35 
Table 4.1. Average forecasting errors (WMAPE in %) ................................................................ 50 
Table 5.1 Summary of important findings from this study ........................................................... 54 
Table B.1 Congestion length and duration of hot spots of noon and evening game days ............ 61 



 

 

 



 

ix 

Acknowledgments 

The authors would like to thank the Nebraska Department of Transportation (formerly the 

Nebraska Department of Roads) for sponsoring this research and the Federal Highway 

Administration for the state planning and research funds that were used to help fund this project.  

 

 



 

 

 



 

xi 

Executive Summary  

In recent years, traffic congestion has become a significant issue in urban areas. People in the 

United States travel an extra one billion hours and consume an extra one billion gallons of fuel 

due to traffic congestion every year. Therefore, monitoring the performance of the transportation 

system plays an important role in any transportation operation and planning strategy.  

Congestion that is caused by accidents, road work, special events, or adverse weather is called 

non-recurring congestion. Non-periodic events with an expected large attendance (referred to as 

planned special events [PSE]), such as concerts, football games, etc., play a major role in 

transportation delays.  

Memorial Stadium in Lincoln, Nebraska, is the home of the Nebraska Cornhuskers football team. 

With an extended capacity of more than 85,000 people, the stadium is commonly referred as the 

ñthird-largest city in Nebraskaò on game days. Game days, therefore, typically affect travel 

patterns in Lincoln and its neighboring regions.  

This report documents a study evaluating the relationship between professional sporting events 

and traffic congestion using INRIX data covering the past five years in Nebraska. The objective 

of this study was twofold: (1) monitor and evaluate the performance of the transportation system 

and travel behavior on football game days and (2) detect game day traffic hotspots on five major 

routes in Nebraska and identify significant factors affecting hotspot size. 

This study demonstrates a systematic way to assess travel patterns and identify traffic hotspot 

clusters on football game days compared to normal days. Five major routes in Nebraska were 

selected for this study, and the analysis utilized historical and real-time traffic data, including 

speeds, travel times, and location information, collected through the INRIX traffic message 

channel (TMC) monitoring platform. The INRIX dataset is currently regarded as the largest 

crowd-sourced traffic dataset. A comprehensive exploratory analysis of performance monitoring 

on game days against normal days for the five selected routes in Nebraska was also performed. 

Among the different analytical tasks that can be performed on spatiotemporal data, hotspot 

analysis is an important tool in the transportation field. A realistic scenario involving the 

application of hotspot detection is in traffic incident detection. A novel method for hotspot 

detection is proposed in this report. The proposed algorithm uses the spatiotemporal matrix of 

expected congestion cases as the baseline information. Using the expected congestion case 

matrix as the baseline information, we can replace the observed cases by the respective expected 

cases for the previously detected congestion regions in the spatiotemporal space and re-run the 

algorithm to detect additional hotspot clusters, if they exist. 

After detecting hotspots, it is crucial to identify the factors affecting the sizes of the hotspots, 

their locations, and other possible parameters. The start time of the game and the Cornhuskersô 

opponent for a given game are two important factors affecting the number of people coming to 

Lincoln, Nebraska, on game days. The start time of the game can be classified as either noon or 

evening. The opponent of the Nebraska Cornhuskers also plays a significant role in the 
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importance of a given game and therefore the size of the crowd that the game draws. Over the 

last five years, the Cornhuskersô toughest opponents, i.e., the opponents drawing the largest 

crowds, were (1) Ohio State, (2) Wisconsin, (3) Northwestern, (4) Michigan State, (5) Iowa, and 

(6) Purdue. Hotspot size can be defined as (1) the number of congested lanes, (2) the number of 

congested segments, and (3) congestion duration. 

Finally, given the start time of the game (noon or evening), the toughness of the opponent, and 

the specific congested segments on each route, traffic speeds on the following yearôs game days 

(2018) were forecast using Dynamic Bayesian Networks, and hotspot clusters were identified 

based on the dataset of predicted traffic speeds. Data from 2018 were utilized as a validation 

dataset. 
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1. Introduction  

1.1 Background 

Monitoring the performance of the transportation system is a fundamental element of any 

transportation operation and planning strategy. Traditionally, transportation system performance 

monitoring was based on average travel times. However, travel time is not capable of 

representing the quality of service that commuters experience daily and may also inaccurately 

reflect the actual level of congestion by not accounting for unexpected congestion. 

Traffic congestion directly translates into transportation cost and plays a key role in assessing the 

performance of the transportation systems and the impacts of planning decisions. When a road 

reaches its capacity, every additional vehicle creates overload, which in turn delays other 

vehicles. Increased travel times, accidents, unpredictability of arrival times, increased fuel 

consumption, and increased pollution emissions are some of the impacts of congestion.  

Generally, there are two types of congestion: recurring and non-recurring. Recurring congestion 

is caused by routine traffic in a normal environment and is repetitive in nature and observed 

during peak periods, whereas non-recurring congestion is unexpected and is most likely caused 

by an incident. Non-recurring congestion may also result from a variety of other factors, such as 

lane-blocking crashes, disabled vehicles, work-zone lane closures, and adverse weather 

conditions. For urban road networks, travel time (and indirectly delay) is the most commonly 

used indicator to determine whether the congestion is recurring or non-recurring. Since 

unexpected incidents are the predominant source of travel time unreliability (Hojati et al. 2016), 

it is crucial to predict the performance of the transportation network during unusual conditions 

and plan a set of actions to enhance the mobility and safety of travelers.  

Daily congestion is common in many US cities, and most travelers expect and plan for some 

delay, particularly during peak hours. Most commuters modify their schedules or budget extra 

time to allow for traffic delays. It is the unexpected congestion that worries travelers the most. 

Travelers want to have a reliable travel time and want to be confident that a trip that takes 30 

minutes today will also take 30 minutes tomorrow. Travel time reliability reflects the extent of 

this unexpected delay. Reliability is formally defined as the consistency or dependability in 

travel times, as measured from day to day and/or across different times of the day.  

1.2 Planned Special Events (PSE) 

Non-periodic events with an expected large attendance (known as planned special events [PSE]), 

such as concerts, football games, etc., play a major role in transportation delays (Kwoczek et al. 

2014). Although such events are mostly different from each other, they all have one attribute in 

common: they impose a non-recurring stress on the transportation network, which leads to safety 

risk, capacity reduction, and demand surge.  
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The presence of a professional and college sports team in a city can have a considerable impact 

on the local economy of that city. Previous research has focused mainly on assessing the benefits 

of professional and college sports teams to the local economy, without any focus on the direct 

and indirect costs generated by professional and college sports teams and their games. Direct 

costs include facility construction; salaries for players, managers, and officials; and the costs 

associated with public safety at games. Indirect costs come from traffic, crowds, trash and 

pollution, noise, crime, and other negative aspects of the games. A thorough understanding of 

both the benefits and costs of professional and college sports teams provides context for 

understanding the public subsidies provided to professional and college sports teams.  

In this report, we empirically analyze the relationship between attendance at National Collegiate 

Athletic Association (NCAA) Division I Football Bowl Subdivision (FBS) games and traffic in a 

US metropolitan area, an indirect cost associated with the presence of a college football team.  

The FBS is the most competitive subdivision of NCAA Division I, which itself consists of the 

largest and most competitive schools in the NCAA. As of the 2017 college football season, there 

are 10 conferences and 130 schools in the FBS. College football is very popular in the US, and 

the top schools generate tens of millions of dollars in yearly revenue. The top FBS teams attract 

thousands of fans to games, and the largest American stadiums by capacity all host FBS teams. 

Football teams typically play at least six home games per season.  

Memorial Stadium in Lincoln, Nebraska, is the home of the Nebraska Cornhuskers football team. 

With an extended capacity of more than 85,000, the stadium is commonly referred as the ñthird-

largest city in Nebraskaò on game days. The stadium holds the NCAA record for consecutive 

sellouts for every game since 1962, a streak of more than 300 games. Game days, therefore, 

typically affect the travel patterns of Lincoln and its neighboring regions. Most of the existing 

research on the economic costs associated with professional and college sports has focused on 

either the financial costs associated with facility construction or the crime associated with events 

held in sports facilities. However, little research has focused on the direct costs generated by 

games, such as the costs associated with public safety and sanitation, or indirect costs, such as 

the opportunity cost of funds used to subsidize the construction and operation of sports facilities. 

This report focuses on the relationship between professional and college sports events and traffic 

congestion, another overlooked cost of hosting sporting events. 

1.2.1 INRIX Data Sources  

In this study, we utilized historical and real-time traffic data, including speeds, travel times, and 

location information, collected through the INRIX traffic message channel (TMC) monitoring 

platform. The INRIX dataset is currently regarded as the largest crowd-sourced traffic dataset. 

With the help of todayôs technologies, including connected vehicles and smartphones, INRIX 

offers a vast amount of historical and real-time data that can be analyzed and investigated to 

improve the performance of transportation networks. INRIXôs historical traffic flow data 

includes spatial and temporal data on average speeds for major roadways and arterials across all 

50 states. These speeds are determined by algorithms that evaluate multiple yearsô worth of data 

collected using INRIXôs patented Smart Dust Network system, which reports speed values on 
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roads across the country. The speed data are then processed across several different temporal 

resolutions and reported on a customer-configurable basis for each temporal resolution. 

INRIX derives historical flow data using the following:  

ǒ Traffic sensors ï Sensors put in place by local departments of transportation (DOTs) or 

private sector companies that report traffic speed or other data from which traffic speed can 

be inferred. The sensors utilize one of several types of technology:  

o Induction loop sensors embedded in the roadway 

o Radar sensors 

o Toll tag readers along stretches of roadway 

ǒ Probe vehicles ï The INRIX network includes hundreds of thousands of probe vehiclesð

trucks, taxis, buses, and passenger cars with onboard global positioning system (GPS) 

devices and transmitting capabilityðto relay vehicle speed and location back to a central 

facility. INRIX has agreements with several fleets to obtain the speed and location data 

anonymously.  

ǒ INRIX Smart Dust Network ï This network combines real-time GPS probe data from more 

than 650,000 commercial vehicles across the US that travel on specific road segments during 

particular time windows, physical sensor information, and other real-time traffic flow 

information with hundreds of market-specific criteria that affect traffic, such as construction 

and road closures, real-time incidents, sporting and entertainment events, weather forecasts, 

and school schedules. The Smart Dust Network gathers all input points, weights them 

appropriately based on input quality and latency, and calculates the speeds on a given road 

segment to a measured degree of accuracy.  

1.2.2 INRIX Data Format  

All INRIX historical traffic flow data for the state of Nebraska were delivered in comma-

separated value (CSV) format. The data provided by INRIX contained the following 

information: 

ǒ TMC ID ï the basic spatial unit used by INRIX to report the traffic flow data; INRIX uses a 

nine-digit TMC ID to define a unique segment 

ǒ Time segment ï a 19-digit time format used by INRIX to define the year, month, day, hours, 

minutes, and seconds (e.g., 2014-09-30 23:59:33 for September 30, 2014 at the 23rd hour, 

59th minute, and 33rd second) for each TMC 

ǒ Speed ï the average speed for a given TMC code, calculated using live data from the most 

current time slice 

ǒ Reference speed ï an uncongested ñfree-flowò speed determined for each TMC segment 

using the INRIX traffic archive 

ǒ Average speed ï the historical average mean speed for the reporting segment for that time of 

day and day of the week in miles per hour 

ǒ Travel time ï an attribute reported by INRIX based on an aggregation of data provided by 

GPS probes 

ǒ Confidence ï an attribute reported by INRIX having three levels: 10, 20, and 30. A 
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confidence of 30 indicates that enough base data were available to estimate traffic conditions 

in real-time, rather than using either historical speed based on time of day and day of week 

(indicated by confidence of 20) or free-flow speed for the road segment (indicated by a 

confidence of 10). 

ǒ C_value ï the confidence value (ranging from 0 to 100), designed to help agencies determine 

whether the INRIX value meets their criteria for real-time data 

An instance of Nebraska data is shown in Figure 1.1. 

 

Figure 1.1. An instance of Nebraska INRIX data 

1.3 Hotspot Detection 

Hotspot detection is used in many disciplines, such as in crime analysis for analyzing where 

crimes occur with a certain frequency, in fire analysis for studying the phenomenon of forest 

fires, and in disease analysis for studying the localization and focus of diseases.  

In the transportation field, a realistic scenario involving the application of hotspot detection is in 

traffic incident detection. Suppose that there are several detectors across a city recording the 

speeds of vehicles passing the detectors, and consider the vehiclesô speeds on normal days over 

multiple years to be the baseline information and the vehiclesô speeds on game days over 

multiple years to be the case dataset. The goal in hotspot detection is to detect those 

spatiotemporal regions that contain unexpected lower speeds that lead to non-recurring 

congestion.  

In addition to detecting hotspots, this study aims to identify the factors that affect the sizes of 

hotspots, their locations, and other possible parameters. 

1.4 Report Organization 

This report is organized as follows. A literature review summarizing previous pertinent studies is 

provided in Chapter 2. Chapter 3 presents the data used in this study, describes the routes 

selected, and provides some preliminary analysis. In Chapter 4, the experiments and results are 
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explained in detail, a complete traffic hotspot analysis is presented, a novel hotspot detection 

method is proposed, and insights into the observed results are provided. The report concludes in 

Chapter 5 with a summary of the findings of this study and a discussion of recommendations for 

future research.   
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2. Literature Review 

2.1 Introduction  

This chapter provides a review of previous studies conducted on probe data, planned special 

events and their impact on traffic congestion and travel behavior, and methods for detecting 

hotspots during special events. 

2.2 Planned Special Events (PSE) 

Traffic congestion represents a significant problem in many urban areas. Duranton and Turner 

(2011) note that in 2001, the average American household spent more than 2.5 person-hours each 

day in a passenger vehicle. They also investigated the effects of road construction and other 

factors on congestion. Rappaport (2016) extended the standard monocentric city model to 

include commuting and identified traffic congestion as a critical factor constraining local growth. 

Another recent study concluded that commuting to and from work is among urban householdsô 

least enjoyable activities, suggesting that additional time spent in a car at the end of the day 

involves substantial psychic costs.  

Non-periodic events with large attendance (i.e., PSEs) play a significant role in transportation 

delays (Kwon et al. 2006). Although such events are mostly different from each other, they all 

have one feature in common: they impose a non-recurring stress on the transportation network, 

which leads to safety risk, capacity reduction, and demand surge. Major events are discussed in 

many studies. They can be recognized by their larger spatio-temporal size compared to recurring 

congestion, but they are not well defined. Müller (2015) proposed a methodology containing four 

parameters for defining major events: number of visitors, media coverage, costs, and urban 

transformation (Müller 2015). The Handbook for Event Transportation (Handbuch 

Eventverkehr) similarly categorizes events according to a substantial list of factors, including but 

not limited to the number of expected visitors, relative size, open or closed access, location, 

whether the event is weather dependent, duration, and financing (Amini et al. 2016). As an 

example of the congestion generated by large events, a concert by Rihanna in South Africa in 

October 2013 forced people who were trying to reach the stadium to sit in traffic for more than 

five hours. Similarly, a concert by Robbie Williams in London in 2003 created tailbacks of up to 

10 miles on highway A1 towards the stadium. Traffic congestion created by special events has a 

typical pattern, including two sequential waves of congestion (Leilei et al. 2012). The first wave 

consists of people going to the event, while the second consists of people leaving the venue. 

Interestingly, the second wave may be even bigger that the first.  

Few studies have been conducted to predict congestion due to special events. At the same time, 

there is almost no way to predict this kind of non-recurring congestion ahead of time. In this 

report, we examine the effects of one specific type of special event, football games, on traffic 

patterns and travel behaviors in the city of Lincoln, Nebraska. 

It is worth noting that the relationship between urban vibrancy, traffic congestion, and 

greenhouse gas emissions has been investigated; the presence of a professional sports team in a 
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city could represent a type of consumer amenity that contributes to urban vibrancy. Professional 

sporting events attract large numbers of fans attending games in a small area at the same time. 

The presence of large surface parking lots and parking structures near sports facilities indicates 

that large numbers of fans drive to games. Many professional sporting events take place on 

weekend evenings, and many sports facilities are located in the urban core of large cities. Taken 

together, this suggests that sporting events could have a substantial impact on traffic congestion. 

Basic ñback-of-the-envelopeò estimates of annual vehicle miles travelled (VMT) based on 

National Household Travel Survey (NHTS) data and actual FBS attendance suggest that fan 

travel to football games could account for as much as one-half of one percent of annual 

metropolitan area VMT, which could plausibly affect local traffic congestion. 

2.3 Professional Sporting Events 

Fan attendance represents the key link between sporting events and urban traffic. To attend a 

sporting event, most fans travel between their home or place of work and the venue where the 

event takes place. Fan attendance at professional sporting events concentrates economic activity 

spatially in and around facilities and temporally on game day. This concentration has clear 

economic impacts.  

Humphreys and Zhou (2015) developed a spatial economic model that includes agglomeration 

effects stemming from increased fan activity in and around professional sports facilities on game 

day that predicts that the presence of a professional sports team will increase nearby property 

values and induce other service-providing firms to collocate near the sports facility. Huang and 

Humphreys (2014) found evidence of increased housing market activity near new sports facilities 

after the facilities opened, supporting the predictions of the model by Humphreys and Zhou 

(2015). If this housing market activity reflects the immigration of new residents, the population 

density near sports facilities will increase. Coates and Humphreys (2003) show that employees in 

the amusements and recreation industryðthe industry that includes athletes and other employees 

working in sports facilitiesðearn more in cities with professional sports teams than employees 

in this industry in cities without professional sports teams; these results support the idea of 

increased economic activity in and near sports facilities (Coates and Humphreys 2003).  

Despite this evidence of increased economic activity near sporting events, no evidence exists to 

support the idea that professional sports teams or facilities generate broader economic benefits 

across metropolitan areas. However, the concentration of fans around sports facilities on game 

days, along with an increase in the nearby population, has clear consequences for traffic near 

sports facilities. Most professional sports facilities are located in or near the central business 

district (CBD) in their respective cities, which also contains many firms employing large 

numbers of workers who travel to and from their residence on weekdays, often by car. Many fans 

drive to games and park in dedicated lots surrounding sports facilities or in nearby lots and 

parking structures that are also used by local workers and residents.  

A few papers in the geography literature have examined the effect of sports facilities on local 

parking and traffic. All are case studies, and most use surveys of local residents to assess the 

extent to which increased traffic, parking, crowds, and noise on game days are perceived as a 
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ñnuisanceò externality by local residents. Mason et al. (1983) used household surveys to assess 

the importance of negative externalities generated by games played in a football stadium in 

Southampton, England; the paper concluded that traffic and parked cars generated substantially 

larger ñnuisanceò externalities on game days than crowds or noise, and the negative effects of 

traffic and parking extended several miles from the stadium (Mason et al. 1983). Chase and 

Healey (1995) assessed the importance of negative externalities generated by games played and 

rock concerts held in a football stadium in Ipswich, England; this paper also concluded that 

traffic and parked cars were the largest ñnuisanceò externalities associated with football matches 

and found a similarly large traffic impact area. Chase and Healey (1995) discussed proposed 

stadium location decisions in Australia in light of Australian transportation policy initiatives and 

the existing transportation environments around several rugby and Australian Rules Football 

stadiums located in the center of larger Australian cities. Although this paper did not gather 

empirical evidence, the discussion highlights the importance of increased local traffic and 

parking on game day.  

Little research has focused on the direct costs generated by games, such as the costs associated 

with public safety and sanitation, or indirect costs, such as the opportunity cost of funds used to 

subsidize the construction and operation of sports facilities. In one such study, Pyun and Hall 

(2019) reviewed the existing evidence on the relationship between professional sporting events 

and crime. Nevertheless, case study-based evidence clearly indicates that additional traffic 

around sports facilities on game days represents an important ñnuisanceò externality to residents 

of areas near stadiums in England and Australia. The existing theoretical and empirical evidence 

on professional sports teams in North America suggests that stadiums and arenas concentrate 

fans and economic activity in and near sports facilities on game days and may also increase the 

number of businesses and residents near sports facilities. All of these factors could increase 

traffic. However, the perceptions of residents near sports facilities about traffic conditions on 

game days may not reflect outcomes across the broader metropolitan area, and a concentration of 

fans and economic activity near a sports facility may not increase overall traffic in a metropolitan 

area. A full understanding of the potential impact of sporting events on traffic in metropolitan 

areas requires a model that determines realized driving outcomes.  

In general, predicting traffic congestion in urban environments is a highly complex task. Early 

approaches to traffic prediction used simulations and theoretical modeling (e.g. Clark 2003, 

Chrobok et al. 2004). More recently, thanks to the availability of massive new datasets on traffic, 

several different statistical and data-driven approaches have been presented. Examples include 

generalized linear regression (Zhang and Rice 2003), nonlinear time series (Ishak and Al-Deek 

2002), Kalman filters (van Lint 2008), support vector regression (Wu et al. 2004), and various 

neural network models (van Lint 2008, Park et al. 1999, Vanajakshi and Rilett 2004). A 

combination of some of the latter approaches is used by current commercial navigation solutions, 

which are able to predict recurring congestion by identifying characteristic traffic flow patterns 

on street segments based on historical data. These commercial systems can also optimize route 

planning based on the real-time traffic situation.  

In general, traffic congestion can be divided into recurring congestion, usually caused by a 

mobility demand that exceeds the capacity of the road network (e.g., due to rush hour), and non-

recurring congestion (e.g., due to incidents or special events) (Kwon et al. 2006). The effects of 
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non-recurring traffic congestion and the prediction of this type of congestion are widely 

investigated topics within the research community (e.g., Miller and Gupta 2012, Pan et al. 2012, 

Pan et al. 2015). Although approaches to predicting non-recurring congestion have improved 

significantly over time, most use data from stationary loop sensors that are not always capable of 

reflecting the traffic state at the level of granularity required for urban scenarios. In addition, the 

focus of these approaches has been on unidirectional street segments such as highways, whereas 

usually in cities the impact of congestion is multidimensional, evolving in a two-dimensional 

(2D), more complex route network. Previous studies have highlighted that PSEs are possible 

influencing factors on non-recurring congestion (Kwon et al. 2006, Ishak and Al-Deek 2002, 

Horvitz et al. 2005), since they may lead thousands (or even hundreds of thousands) of people to 

travel towards and then away from the same destination in a very limited time span. 

To the best of our knowledge, the only work available that focuses on the influence of PSEs on 

traffic is presented in Kwoczek et al. (2014). The authors present a generic overview of the 

influence of PSEs on road networks, derived from an event classification system defined by the 

Chinese State Council. The authors also introduce management plans for different types of 

events, but there is no quantifiable solution for predicting traffic. 

In the present report, we make use of INRIX probe data to analyze the influence of PSEs on 

traffic and make planning decisions based on that. However, first it is crucial to explain what 

probe-sourced data are. 

2.4 Widely Available INRIX data 

As demand for comprehensive traffic monitoring grows from both travelers and transportation 

agencies, a new technology that would reduce the installation and maintenance costs of 

monitoring systems is needed for collecting accurate and real-time traffic details. Probe-based 

methods of measuring travel time and speed data can easily scale across large networks without 

the need for deploying any additional infrastructure (Young 2007).  

The emergence of probe vehicle technology, the use of which has grown over the past few years, 

has caused a remarkable change in traffic data collection, processing, analysis, and utilization. 

The ability to access a huge volume of historical and real-time traffic data without any of the 

costs of installation, configuration, and maintenance of infrastructure-mounted sensors interests 

many agencies that want to utilize a single, uniform data source for monitoring traffic conditions 

across most routes in the US. Traffic information is collected from millions of cell phones, vans, 

trucks, connected cars, commercial fleets, delivery vehicles and taxis, and other GPS-enabled 

vehicles. At present, several probe data vendors, such as INRIX, HERE, TomTom, NAVTEQ, 

and TrafficCast, provide broad and high-quality real-time and historical traffic data around the 

world.  

INRIX provides updates on speed, travel time, incidents, and data quality along each mile-long 

travel segment at a frequency of once every minute. For the entire Nebraska roadway system, the 

stream for the INRIX TMCs comprises approximately 9 to 10 GB/month, or more than 100 

GB/year, and for XD segments the stream is approximately 45 GB/month, or more than 545 
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GB/year. With the introduction of greater spatial coverage and resolution, the size of the input 

streams is expected to increase (Cookson and Pishue 2017).  

Many studies have been conducted comparing the accuracy and reliability of probe-sourced data 

against that of local sensor data, such as data from radar sensors and loop detectors, which are 

considered the benchmark (Feng et al. 2010, Coifman 2002, Lindveld et al. 2000, Kim and 

Coifman 2014, Hu et al. 2015, Mudge et al. 2013). Kim and Coifman (2014) showed that INRIX 

speeds tend to lag behind the speeds measured by loop detectors by almost 6 minutes. Although 

INRIX reports two measures of confidence, these confidence measures do not appear to reflect 

this latency or the occurrence of repeated INRIX-reported speeds. Kim and Coifman (2014) used 

two months of INRIX data against the concurrent loop detector data to evaluate INRIXôs 

performance during both recurrent and non-recurrent events on 14 miles of I-71. To calculate the 

amount of latency, the authors used a correlation coefficient with several months of continuous 

data from concurrent detectors while shifting the time-series loop detector with 10 second steps.  

The Federal Highway Administration (FHWA) conducted a survey to gather information on (1) 

products and services offered by private sector data providers and (2) the use of those private 

sector data products and services by public sector agencies. The FHWA found that agencies are 

using a range of data sources, including GPS data from fleet vehicles, commercial devices, cell 

phone applications, fixed sensors installed and maintained by other agencies, fixed sensors 

installed and maintained by data providers, and cell phone locations. Most providers did not 

disclose specific quality evaluation results or quality assurance algorithms. INRIX explicitly 

stated its capability of meeting an availability level of more than 99.9% and an accuracy of 

greater than 95% (FHWA 2016).  

Nanthawichit and Nakatsuji (2003) proposed a method for treating probe vehicle data together 

with fixed detector data to estimate the traffic state variables of traffic volume, space mean 

speed, and density. The method uses a macroscopic model along with the Kalman filtering 

technique and was verified with several sets of hypothetical traffic data. The authors suggested 

the possibility of using estimated/predicted states to estimate/predict travel time.  

Coifman (2002) investigated various means of measuring link travel times on freeways. He used 

basic traffic flow theory to estimate link travel time using point detector data without the need 

for any new hardware.  

Sadrsadat and Young (2011) worked on the I-95 Corridor Coalitionôs Vehicle Probe Project 

(VPP) to determine the probability that traffic data are reported in real-time as a function of 

hourly volume. The authors compared the VPP data against travel time data collected using 

Bluetooth traffic monitoring equipment. The VPP provides an indication that traffic data are 

reported in real-time data by a confidence score attribute equal to 30; the confidence score is 

provided by INRIX. The study confirmed the increasing availability of real-time data with 

increasing traffic volume, as measured by the percentage of confidence scores of 30.  

Feng et al. (2010) investigated the analytical relationships between travel time 

prediction/estimation accuracy and sensor spacing by means of two basic travel time 
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prediction/estimation algorithms. The authors also measured probe vehicle penetration rate. 

Travel times estimated and predicted online using induction loop detectors were evaluated 

against observed travel times. The findings of the study provide support for detector placement 

and probe vehicle deployment, especially along freeway corridors with existing detectors.   

Lindveld et al. (2000) found reasonably accurate results (10% to 15% root mean square error 

proportions) for travel time prediction/estimation accuracy across different sites for uncongested 

to lightly congested traffic conditions. They used various travel time estimators, but only speed-

based travel time estimators could be tested under congested conditions. 

The Florida Department of Transportation (FDOT) used several metrics, such as absolute 

average speed error, average speed bias, absolute average travel time error, and travel time bias, 

to determine the accuracy of vendorsô (NAVTEQ, TrafficCast, and INRIX) data. Overall, the 

data looked consistent with the ground truth and license plate reader data, and no significant 

differences in data accuracy among the three vendors were observed (FDOT 2012).  

Sharma et al. (2017) explored the reliability of probe data for congestion detection and overall 

performance assessment using an adaptive, data-driven, multiscale data decomposition algorithm 

called Empirical Mode Decomposition. The authors noted that the cost of deploying large-scale 

control strategies for traffic networks has increased the need for more reliable real-time traffic 

condition prediction.  

Liu et al. (2016) discussed two approaches for travel time prediction/estimation accuracy : 

dynamic mode decomposition and spatiotemporal pattern networks. Their results showed that 

data-driven approaches effectively detected changes in traffic system dynamics during different 

times of the day. 

A technical memorandum published by FDOT (2012) summarizes the various data available for 

analyzing bottlenecks and congestion on Floridaôs Strategic Intermodal System. This technical 

memorandum also makes recommendations concerning the applicability of using existing FDOT 

data versus vehicle probe data from INRIX.  

Schuman and Glancy (2015) discussed how INRIX launched the worldôs first crowd-sourced 

traffic monitoring network using sensors in fleet vehicles and mentioned how INRIX XD gives 

greater traffic detail on any map and a platform for planning, analysis, and operation of road 

networks.  

Matsumoto et al. (2010), using probe data to estimate CO2 emission reductions, defined three 

services (traffic flow analysis, improvement of signal control performance, and priority control 

of bypasses) that enhance traffic flow control. The authors confirmed the detection of a 

bottleneck without depending on the deployment rate of in-vehicle GPS units by using probe 

data statistically in traffic flow analysis (Matsumoto et al. 2010). 
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Different techniques (data assimilation, Newtonian relaxation) to incorporate probe data into 

macroscopic traffic flow models have been used to solve the optimization problem in urban 

areas, and these techniques have confirmed the possibility of decreasing the amount of probe 

data needed to detect congested traffic with negligible degradation of the quality of the traffic 

status estimation (Chu and Saito 2013). While reducing CO2 emissions using intelligent traffic 

control requires many detectors and high installation costs, Nagashima et al. (2014) used probe 

data collected by vehicles equipped with GPS or other devices and a signal control system that 

calculated consecutive spatial traffic information (spatial data) such as queue length. The authors 

showed that it is possible to reduce the number of detectors needed for the calculation.  

Haghani et al. (2015) described a novel validation scheme for comparing travel time data from 

two independent data sources with an emphasis on arterial applications. In addition, a context-

dependent-based travel time fusion framework was developed to integrate data from INRIX and 

Bluetooth datasets to improve data quality. To minimize the impact of random errors that can 

occur with INRIX data, two new techniques, confidence value and smoothing, were developed 

by a coalition of the University of Maryland and INRIX. When used together, these techniques 

reduce both the frequency and severity of the sudden changes in traffic condition that have been 

observed. Kobayashi et al. (2011) suggested using probe data to collect spatial traffic 

information in an effort to reduce CO2 emissions and verified the possibility of detecting 

bottleneck intersections based on traffic flow analysis utilizing infrared beacon probe data 

collected from the field. 

In the present study, we utilized the historical and real-time traffic data, including speeds, travel 

times, and location information, collected through the INRIX TMC monitoring platform. With 

the help of todayôs technologies, including connected vehicles and smartphones, INRIX offers a 

vast amount of historical and real-time data that can be analyzed and investigated to improve the 

performance of transportation networks. INRIXôs historical traffic flow data includes spatial and 

temporal data on average speeds for major roadways and arterials across all 50 states. These 

speeds are determined by algorithms that evaluate multiple yearsô worth of data collected using 

INRIXôs patented Smart Dust Network system, which reports speed values on roads across the 

country. The speed data are then processed across several different temporal resolutions and 

reported on a customer-configurable basis for each temporal resolution. 

2.5 Hotspot Detection 

Generally, predicting traffic congestion in urban environments is an extremely complex task. In 

general, two types of congestion are defined: recurring and non-recurring. Recurring congestion 

is caused by the usual traffic in a normal environment and is repetitive in nature and observed 

during peak periods, whereas non-recurring congestion is unexpected and is often caused by 

weather conditions, work zones, and incidents. While early approaches for traffic forecasting 

included simulations and theoretical modeling, the massive traffic datasets available today have 

made several different statistical and data-driven approaches available to the research 

community, including linear regression, nonlinear time series, Kalman filters, support vector 

regression, and various neural network models. The effects of traffic congestion and the 

prediction of these effects have been extensively studied. However, to the best of our knowledge, 
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only one study has focused on the impacts of PSEs on traffic congestion (Kwoczek et al. (2014). 

The authors of that study present a general theory of the impact of PSEs on road networks, 

derived from an event classification system defined by the Chinese State Council. The authors 

also introduce management plans for different types of events, but there are no measurable 

solutions to predict traffic. 

Over the years, many researchers have attempted to utilize mathematical prediction methods for 

traffic prediction. In the field of traffic flow prediction, traffic flow has always been regarded as 

a two-dimensional stochastic process (temporal and spatial). Parametric models try to find a 

mathematical model parameter that describes traffic flow as a time series process. In 1979, the 

first parameter approach was proposed to predict short-term freeway flow using an 

autoregressive integrated moving average (ARIMA) model. Many studies have shown the value 

of the ARIMA model, but the approaches in these studies suffer from a tendency to focus on the 

average values of the time series and therefore are not able to predict extremes. In order to 

predict the flow of traffic within a study area, other parametric models, such as the Kalman 

filtering model and local linear regression, have also been suggested.  

Since 1990, researchers have tended to make use of nonparametric instead of parametric models. 

In order to define the modelôs structure and the number of parameters, nonparametric models 

rely on training data. While nonparametric models are promising because of the nonlinear nature 

of traffic flows, many of the proposed methods only characterize traffic flow temporally in a 

time series process. This paper investigates Bayesian networks (BN) to predict traffic flows 

using spatial and temporal information. Dynamic Bayesian Networks (DBN) extend Bayesian 

networks to model systems that evolve over time. In other words, a DBN is a BN that relates 

variables to each other over contiguous time stamps. 

2.6 Conclusion 

This chapter summarized previous studies on the impacts of various kinds of planned special 

events. Moreover, the impacts of professional sporting events, an example of a PSE, on traffic 

congestion were examined. Finally, information was presented on INRIX, the source of data for 

this study. The next chapter presents details on the data used and routes selected for this study 

and an exploratory analysis. 
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3. Data 

3.1 Introduction 

In todayôs complex global economy, transportation connections enable a business to locate in 

any region offering the best possible combination of labor, land, tax, and cost while competing 

worldwide. All state departments of transportation (DOTs) rely on fixed-mounted sensors to 

collect traffic information such as travel time, traffic speed, volume, etc. Such traffic information 

can be used by Nebraska Department of Transportation (NDOT) councils to identify which 

routes are used most and to decide whether to improve those roads or provide alternatives if there 

is an excessive amount of traffic.  

Probe data collection involves a set of relatively low-cost methods for obtaining travel time and 

speed data for vehicles traveling on freeways and other transportation routes. NDOT has already 

procured probe data streams through a third-party vendor, INRIX, to augment traffic data 

collection and assess the performance of its operations. INRIX is maintaining 4,125 traffic 

management centers to collect traffic information for major freeways and urban areas in 

Nebraska. 

The objective of this study was to assess and explore the impact of University of Nebraska 

Cornhuskers football game days on travel patterns. Game days attract a significantly high 

volume of traffic and hence result in congestion and higher travel times for road users. The past 

several years of INRIX data available through NDOT were used to generate travel time 

reliability curves and thereby estimate shockwave lengths. 

This project provides insights on the impact of game day schedules and the Cornhuskersô 

opponents on travel patterns and route choices. The insights gained from this study will help 

NDOT implement active traffic assignment and thereby reduce congestion on game days.  

Table 3.1 shows the Nebraska Cornhuskers home game schedule from 2013 to 2017. For all 

games, the table shows the date and day of the week, the opposing team, the gameôs result, and 

the start time of the game. 
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Table 3.1. Nebraska Cornhuskers home game schedule and results from 2013 to 2017 

Date Day Opponent Location Result Status Time 

Game Days 2013 

8/2/2013 Fri Fan Day 
Memorial 

Stadium 
   

8/31/2013 Sat Wyoming 
Memorial 

Stadium 
W, 37-34  7:00 PM 

9/7/2013 Sat Southern Miss 
Memorial 

Stadium 
W, 56-13  5:00 PM 

9/14/2013 Sat UCLA 
Memorial 

Stadium 
L, 41-21  11:00 AM 

9/21/2013 Sat 
South Dakota 

State 

Memorial 

Stadium 
W, 59-20   

10/5/2013 Sat Illinois 
Memorial 

Stadium 
W, 39-19  11:00 AM 

11/2/2013 Sat Northwestern 
Memorial 

Stadium 
W, 27-24   

11/16/2013 Sat Michigan State 
Memorial 

Stadium 
L, 41-28   

11/29/2013 Fri Iowa 
Memorial 

Stadium 
L, 38-17  11:00 AM 

Game Days 2014 

8/30/2014 Sat Florida Atlantic 
Memorial 

Stadium 
W, 55-7  2:30 PM 

9/6/2014 Sat McNeese State 
Memorial 

Stadium 
W, 31-24  11:00 AM 

9/20/2014 Sat Miami FL 
Memorial 

Stadium 
W, 41-31  7:00 PM 

9/27/2014 Sat Illinois 
Memorial 

Stadium 
W, 45-14 Homecoming 8:00 PM 

10/25/2014 Sat Rutgers 
Memorial 

Stadium 
W, 42-24  11:00 AM 

11/1/2014 Sat Purdue 
Memorial 

Stadium 
W, 35-14  2:30 PM 

11/22/2014 Sat Minnesota 
Memorial 

Stadium 
L, 28-24  11:00 AM 

Game Days 2015 

4/11/2015 Sat 
Red-White Spring 

Game 

Memorial 

Stadium 

Red 24, 

White 15 
 11:00 AM 

8/5/2015 Wed 
Nebraska Football 

Fan Day 

Memorial 

Stadium 
 

Presented by 

US Cellular 
 

9/5/2015 Sat Brigham Young 
Memorial 

Stadium 
L, 33-28  2:30 PM 

9/12/2015 Sat South Alabama 
Memorial 

Stadium 
W, 48-9  7:00 PM 
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9/26/2015 Sat Southern Miss 
Memorial 

Stadium 
W, 36-28 Homecoming 11:00 AM 

10/10/2015 Sat Wisconsin 
Memorial 

Stadium 
L, 23-21  2:30 PM 

10/24/2015 Sat Northwestern 
Memorial 

Stadium 
L, 30-28  11:00 AM 

11/7/2015 Sat Michigan State 
Memorial 

Stadium 
W, 39-38  6:00 PM 

11/27/2015 Fri Iowa 
Memorial 

Stadium 
L, 28-20  2:30 PM 

Game Days 2016 

8/3/2016 Wed Fan Day 
Memorial 

Stadium 
   

9/3/2016 Sat Fresno State 
Memorial 

Stadium 
W, 43-10  7:00 PM 

9/10/2016 Sat Wyoming 
Memorial 

Stadium 
W, 52-17  11:00 AM 

9/17/2016 Sat Oregon 
Memorial 

Stadium 
W, 35-32  2:30 PM 

10/1/2016 Sat Illinois 
Memorial 

Stadium 
W, 31-16 Homecoming 2:30 PM 

10/22/2016 Sat Purdue 
Memorial 

Stadium 
W, 27-14  2:30 PM 

11/12/2016 Sat Minnesota 
Memorial 

Stadium 
W, 24-17  6:30 PM 

11/19/2016 Sat Maryland 
Memorial 

Stadium 
W, 28-7  11:00 AM 

Game Days 2017 

4/15/2017 Sat Spring Game 
Memorial 

Stadium 

Red 55, 

White 7 
  

9/2/2017 Sat Arkansas State 
Memorial 

Stadium 
W, 43-36  7:00 PM 

9/16/2017 Sat Northern Illinois 
Memorial 

Stadium 
L, 21-17  11:00 AM 

9/23/2017 Sat Rutgers 
Memorial 

Stadium 
W, 27-17  2:30 PM 

10/7/2017 Sat Wisconsin 
Memorial 

Stadium 
L, 38-17  7:00 PM 

10/14/2017 Sat Ohio State 
Memorial 

Stadium 
L, 56-14  6:30 PM 

11/4/2017 Sat Northwestern 
Memorial 

Stadium 
L, 31-24  2:30 PM 

11/24/2017 Fri Iowa 
Memorial 

Stadium 
W, 56-14  3:00 PM 
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3.2 Exploratory Analysis 

The research team and the technical advisory committee for the project decided to select five 

major routes to Memorial Stadium in Lincoln, Nebraska. Figure 3.1 indicates these five routes, 

which included I-80 (No. 1), NE 2 (No. 2), NE 31 (No. 3), US 6 (No. 4), and US 77 (No. 5). 

 

Figure 3.1. Five routes selected for this study 

Raw data files received from the INRIX server were parsed using Hadoop technology and then 

processed using tools like Tableau and Python programming to visualize all routes and detect the 

mostly congested locations on each of the routes on game days. In this report, each of the five 

routes is separately analyzed for all game days over five years, from 2013 through 2017.  

Figure 3.2 illustrates the inspiration for examining traffic speeds on game days before the start 

time of each game until after the end of the game.  
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Orange and red represent normal and game days, respectively 

Figure 3.2. Hourly CDFs of speeds on two game days and two normal days for a sample 

game starting at 2:30 PM 

The horizontal axis in the figure shows speed in mph, and the vertical axis represents the 

cumulative distribution functions (CDFs) of the speeds. The CDF is the probability that a 

variable takes a value less than or equal to x. The horizontal axis represents the allowable 

domain for the given probability function. Because the vertical axis reflects probability, it must 

fall between 0 and 1; it increases from 0 to 1 from left to right on the horizontal axis.  

As can be seen in Figure 3.2, the CDFs of the speeds for two normal days and two game days 

(orange and red, respectively) start to shift in the hours before the start time of the games (11 

a.m., 12 p.m., 1 p.m., 2 p.m.) and after the end of the games (5 p.m. and 6 p.m.). Take, for 

example, games with start times of 2:30 p.m. Point A in Figure 3.2 indicates two red lines, the 

CDFs of the speeds on two separate game days at 12 p.m. It can clearly be seen that the CDFs 

(point A) are well below 45 mph, showing congestion at 12 p.m. (almost two hours before the 

start time of the games), which can be contrasted to the orange lines (point B), which represent 

the CDFs of speeds on two separate normal days. A similar scenario is observed at 11 a.m., 1 

p.m., 2 p.m., 5 p.m., and 6 p.m. 

In the following sections, each route is thoroughly analyzed in terms of the congested zones 

identified from a couple of hours before the start time of the games to a few hours after the end 

of the games.  

3.2.1 Route 1: I-80 

First route is I-80, which, in Nebraska, runs east from the Wyoming state border across the state 

to Omaha. Nebraska has over 80 exits along I-80. Figure 3.3 shows I-80 in the state of Nebraska. 
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Figure 3.3. Route I-80 in Nebraska, with blue points representing INRIX TMC segments 

There are several points on I-80 eastbound (EB) showing congestion during game days (from 

exits 353 to 369 in Figure 3.4).  

 

Figure 3.4. Route I-80 EB, with red points representing INRIX TMC segments showing 

congestion on game days 

When the start time of the game is 11:00 a.m. or 2:30 p.m., there is congestion on I-80 

westbound (WB) from Omaha to Lincoln (Figure 3.5). However, when the start time of the game 

is 6:30 p.m. or 7:00 p.m., there is almost no congestion on I-80 WB from Omaha to Lincoln. 

From Exit 353 to 369 
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Figure 3.5. Route I-80 WB, with red points representing INRIX TMC segments showing 

congestion on game days 

For hotspot detection, a very thorough exploratory analysis is conducted on each route. All 

significant speed drops from 2013 to 2017 for each segment is analyzed. If the proportion of 

significant speed drops to total number of game days is greater than 0.5 the segment is classified 

as a hotspot. For instance, if the total number of game days are 40 over the five years (2013 to 

2017) and segment A experienced traffic congestion for 20 times or more during this period, that 

segment will be classified as a hotspot. Figure 3.6(a) shows all segments from Omaha to Lincoln 

(I-80 WB) as blue points. In general, blue points represent all segments on each route. Red points 

represent hotspot segments.  
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a)  
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Noon Evening 

 

 

 

 

b) 

Figure 3.6. (a) Hotspots indicated by red points and (b) heat maps for I-80 EB and WB for 

noon and evening games 

Figure 3.6(b) shows heat maps for I-80 EB and WB for noon and evening game days. Each heat 

map shows 0 as the start time of each game. The heat maps also show six hours before and after 

the start time of the games. Red point are also annotated by name of exit number or street name 

in the figure. Before the games, considerable congestion is evident for both noon and evening 

games starting from three hours before the games on I-80 WB. On I-80 EB, the heat maps show 

traffic congestion after the end of each game, which starts from three and a half hours after the 

start time of the game. The red points in Figure 3.6(a) correspond to the segments on the heat 

maps that show congestion. Those red points correspond to exits 448, 432, after 409, and 401-

401B.  

448 

432 

After 409 

401 - 401B 
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3.2.2 Route 2: NE 2 

NE 2 is a highway in Nebraska with two segments. The western segment begins at the South 

Dakota border northwest of Crawford and ends southeast of Grand Island at the intersection with 

I-80. The eastern segment begins in Lincoln and ends at the Iowa border at Nebraska City. In this 

study, the eastern part of NE 2 is examined. Figure 3.7 shows the eastern part of NE 2. 

 

Figure 3.7. Route NE 2, with blue points representing INRIX TMC segments 

As can be seen in Figure 3.8(b), there is considerable congestion on four segments on NE 2 WB 

for noon games. There is no considerable congestion on NE 2 EB at all.  
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Noon Evening 

 

 

 

 

b) 

Figure 3.8. (a) Hotspots indicated by red points and (b) heat maps for NE 2 EB and WB for 

noon and evening games 

This means that people prefer to choose an alternative route to travel east (for example, to Iowa) 

after the game. However, there is significant congestion on NE 2 WB before the games begin at 

noon, which means that people from Iowa or regions around Nebraskaôs eastern border prefer to 

use this route to travel to Lincoln for noon games. The red points in Figure 3.8(a) correspond to 

S 84th Street and a segment between S 33rd Street to S 27th Street. 

3.2.3 Route 3: NE 31 

NE 31 is a highway in Nebraska. The southern terminus is near Louisville at the intersection 

with NE 50. The northern terminus is near Kennard at the intersection with US 30. The highway 

S 84th St. 

from S 33rd st to S 27th 
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serves as a main north-south highway in the western portion of the Omaha Metropolitan Area 

(Figure 3.9). 

 

Figure 3.9. Route NE 31, with blue points representing INRIX TMC segments 

As can be seen in Figure 3.10(b), there is considerable congestion on three segments on NE 31 

southbound (SB) for both noon and evening games. There is no congestion on NE 31 northbound 

(NB) neither noon nor evening games.  
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a)  
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Noon Evening 

 

 

 

 

b) 

Figure 3.10. (a) Hotspots indicated by red points and (b) heat maps for NE 31 NB and SB 

for noon and evening games 

This means that people prefer to choose an alternative route for traveling north after the game. 

However, there is significant congestion on NE 31 SB before both noon and evening games. The 

red points in Figure 3.10(a) correspond to the intersections between NE 31 SB and US 6, S 216th 

Street, and the merging point to I-80. 

3.2.4 Route 4: US 6 

US 6 in Nebraska is a highway that goes from the Colorado border west of Imperial to the Iowa 

border in the east at Omaha. In Lincoln, US 6 comes into the city on West O Street, portions of 

which are divided highway. At Cornhusker Highway, which is a divided highway, US 6 turns 

east with a short urban connection to I-180 in the west along Cornhusker Highway. US 6 then 

S 216th St. 

merging to I-80 
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follows Cornhusker Highway northeast out of the city. At the east end of Cornhusker Highway 

(near Waverly), US 6 meets I-80. As can be seen in Figure 3.11, US 6 finally merges onto the 

freeway, the West Dodge Expressway, and turns due east towards downtown Omaha. 

 

Figure 3.11. Route US 6, with blue points representing INRIX TMC segments 

As can be seen in Figure 3.12(b), there is considerable congestion on eight segments of US 6 

WB for both noon and evening game days. There is almost no significant congestion on US 6 

EB.  
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a)  
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Noon Evening 

 

 

 

 

b) 

Figure 3.12. (a) Hotspots indicated by red points and (b) heat maps for US 6 EB and WB 

for noon and evening games 

This means that people prefer to choose an alternative route for traveling to Omaha after the 

game, specifically I-80 EB. However, there is significant congestion on US 6 WB before the 

game. The red points in Figure 3.12(a) correspond to 72nd Street in Omaha, Superior Streetï

Cornhusker Highway, N 35th Street, and Sun Valley Boulevard in Lincoln. 

3.2.5 Route 5: US 77 

US 77 in Nebraska runs south to north across the eastern portion of the state, emerging from 

Kansas in Gage County south of Wymore and ending in Dakota County north of South Sioux 

City before making a brief entrance into Iowa. Figure 3.13 shows the portion of US 77 analyzed 

in this study. 
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